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Introductory note

This is an extended version of the slides to the lecture. During the
lecture several pieces of information were only said without being
displayed. For this reason a few explanatory slides and remarks have
been added. If you have any questions, you can contact the authors
via e-mail:

wagner@icpf.cas.cz

kovanic@email.cz



Typical tasks

Marketing – analysis of big data available from eShops, social me-
dia, internet of things etc. Extremal data may be present, they
sometimes disturb analysis, sometimes supply the most valu-
able information.

Quality control – detection of defects, preferably when the quality of
the product is still within acceptable limits.

Process control – analysis of real time data, early detection of depar-
ture from optimum conditions.

Safety – real-time analysis of concentration of hazardous waste, early
detection of dangerous concentration.

Demand for robust methods of data analysis!



Statistical paradigm of uncertainty

• Distribution of errors known a priori, normal distribution often
silently assumed in textbooks of statistics for engineers (ANOVA,
F-test, χ2 test)

• Robust statistical methods require additional assumptions on
the distribution function of outliers

• Continuous distribution function derived for an infinite data set

• Properties of data obtained by extrapolation from an infinite to
a finite data sample



Questions

• Do we know the distribution of data? (quality of products,
concentration of poisonous waste, flow rate of leakage, het-
erogeneities in the raw material, power consumption of home
and industrial consumers)

• Is the data sample large enough to make the extrapolation to
the finite data sample valid?

• Are the outliers rare?

• Can the outliers be discarded without loss of important infor-
mation?

• Is the data analysis algorithm robust so that it can run unat-
tended and produce reliable results?



Principles of mathematical gnostics

• Derived from the fundamental laws of nature

• Based on the properties of each individual measurement

• Properties of a data sample obtained by aggregation of proper-
ties of individual data, hence the results are valid also for small
data samples

• The distribution function as well as themetrics of the space esti-
mated during data analysis: Let the data speak for themselves!

• Robustness is the inherent property

P. Kovanic, M. B. Humber: The Economics of Information (Mathematical Gnos-
tics for Data Analysis). 717 pages. Updated in September 2013.
http://www.math-gnostics.eu/books



Properties of the local estimate of location



Example 1, marginal analysis

Data from NIST Webbook Chemistry, http://webbook.nist.gov

Normal boiling temperature of 1,4-dichlorobutane (CAS 110-56-5)

Available data: 12 measured values

Value reported by NIST: 410 ± 80 K



Results obtained by mathematical gnostics

Parameter Certifying Bound Cum. Probability
LB 426.187 0

LSB 426.250 0.071

ZL 426.938 0.411

Z0L 427.057 0.457

Z0 427.097 0.472

Z0U 427.130 0.484

ZU 427.261 0.533

USB 428.150 0.929

UB 428.216 1



Explanation of symbols
Dx additional (moving) datum
LB, UB bounds of the data support
LSB, USB bounds of domain of sample’s homogeneity
ZL, UL bounds of the interval of typical data
Z0L, Z0U bounds of the tolerance interval
Z0 local estimate of location

Notes:

1. If the moving datum falls outside the interval delimited by (LSB, USB),
the extended data set in not homogeneous.

2. Notation Z∗ is used for amultiplicativemodel, A∗ for an additivemodel.
Both models are mathematically equivalent and one model can be
transformed to the other one by Zx = exp(Ax).



Data classification

Class No. Condition Data class
1 Dx ≤ LB L-outlier
2 LB < Dx ≤ LSB L-dubious
3 LSB < Dx ≤ ZL L-subtypical
4 ZL < Dx ≤ Z0L L-typical
5 Z0L < Dx < Z0 L-tolerated
6 Dx = Z0 Max. density
7 Z0 < Dx ≤ Z0U U-tolerated
8 Z0U < Dx ≤ ZL U-typical
9 ZL < Dx ≤ USB U-overtypical
10 USB < Dx < UB U-dubious
11 UB ≤ Dx U-outlier



Results of data certification
Standard data

Data No. Value Cum. Prob. Class No.
8 426.25 0.071 2
12 426.65 0.293 3
10 427.05 0.454 4
3 427.1 0.473 6
6 427.15 0.492 7
11 428 0.830 8
4 428.15 0.929 8

Nonstandard data (outliers)
Data No. 9 5 2 7 1

Data value 308.15 322 433 434.65 435.2



Example 2, marginal analysis

Data from NIST Webbook Chemistry, http://webbook.nist.gov

Normal boiling temperature of chloroform (CAS 67-66-3)

Available data: 37 measured values

Value reported by NIST: 334.3 ± 0.2 K



Results obtained by mathematical gnostics
Data split to 7 subsamples, 5 with 5 items each, 2 with 6 items each.

Parameter Median MAD %
LB 334.199 0.104 0.031

LSB 334.240 0.059 0.018

ZL 334.328 0.040 0.012

Z0L 334.331 0.033 0.010

Z0 334.334 0.041 0.012

Z0U 334.340 0.043 0.013

ZU 334.339 0.043 0.013

USB 334.450 0.044 0.013

UB 334.451 0.071 0.021

MAD = mean absolute deviation from the median



Example 3, particle size distribution
• Particle size distribution in atmospheric aerosol measured by an
SMPS (scanning mobility particle sizer) and the data transfered
via internet once per hour

• Time series filtered in order to remove disturbances caused by
instrument malfunction and local pollution events

• Distribution function estimated, number of modes estimated
using a condition of equality of entropy of the data and the dis-
tribution function

• The results graphically displayed in near real time on the web –
http://hroch486.icpf.cas.cz/Kosetice/

The procedure runs reliably since May 1, 2008. The graphical display
offers early detection of instrument malfunction and usually even
diagnostics on distance.



Example 4, energetics

• Real time measurement of transfered power plant output

• Real time measurement of the electrical network frequency

• Measurement of frequency/power sensitivity
(failure of 1000 MW block in Germany not detected in Prague
but the quasiperiodic response to switching the Vltava cascade
on/off for 2 minutes repeated four times can be detected)

Kovanic P., Votlučka J., Blecha K.: Experimental determination of the
frequency/power coefficients of an electricity distributing system by
means of periodical impulses of power (in Russian), Elektrotechnický
obzor (Review of Electrical Engineering) 68 (1979), 3, 133–139.



Development of an experimental technique
Measurement of heat capacity (Cp) by a continuous method by using
a Setaram DSC3EVO calorimeter

Task: find the heating rate ensuring the best repeatibility
(nmin = minimum sample size for 10% error in deviation)

Distribution Kurtosis nmin time [weeks]
Uniform 1.8 21 4
Normal 3.0 51 10
Exponential 6.0 126 26
Laplace 9.0 201 41
Lognormal 15.0 351 72

Time needed for reliable determination of tolerance interval and inter-
val of typical data by mathematical gnostics: less than 1 week



Analysis of results of Cp measurement
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Comparison of two series of Cp measurement
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Conclusion
• Methods of data analysis by mathematical gnostics do not im-
pose any kind of a distribution function a priori.

• Robustness is the inherent property of mathematical gnostics.

• The algorithms of mathematical gnostics are robust, can run
unattended so that large number of data samples can be ana-
lyzed automatically.

• In many cases mathematical gnostics can extract additional in-
formation that is not obtainable by statistical methods.

• It is important to understand that mathematics provides us
with tools that can only extract information from data, noth-
ing less, nothing more. The information must be interpreted in
order to be useful.
See also – Nassim Taleb: The Black Swan.
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